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Abstract. Using the Worldline formalism of QED we compute the two-loop effective action induced by a
charged scalar, respectively spinor particle in a general constant electromagnetic field.

1 Introduction

The Euler-Heisenberg one-loop effective action, i.e. the ef-
fective action induced by an electron loop in a constant
electromagnetic field, was one of the first problems to be
adressed in the framework of Quantum Field Theory[1,
2]. In the language of conventional Quantum Electrody-
namics (QED) all corrections caused by a single electron
loop in a constant electromagnetic field were summarized
by regarding this field as a classical background field and
introducing an extra term into the electron propagator.
Later on these calculations were generalized to two-loop
level[3–5].

The Worldline formalism was discussed recently[6–8]
as a method inspired by analogies to string theory in the
limit of infinite string tension[9]. It allows the summa-
tion of whole classes of Feynman graphs and therefore
highly reduces the effort of computing loop-corrections. Its
power has been demonstrated reproducing field theoreti-
cal results particularly in one- and two-loop QED[10,11].
An application of the Worldline formalism to the Euler-
Heisenberg problem turns out to be natural, as the ap-
proach chosen in standard field theory in this case is al-
ready somewhat similar to the Worldline philosophy. In-
deed it reduces to performing Gaussian path integrals in
the space of periodic and antiperiodic functions on the
circle. In this publication we give a generalization and
completion of earlier work by D. Fliegner, M. Reuter, C.
Schubert and one of the authors[12,13]. While they had
only treated purely magnetic fields before, we now cover
general constant electromagnetic field configurations. We
again employ the dimensional regularization scheme, that
had been used to overcome technical problems of proper
time regularization. After a short introduction which will
provide the master-formulas for the two-loop corrections
we shall separately discuss scalar and spinor QED.

Such results are of immediate use e.g. for testing quan-
tum corrections to the polarization tensor of the photon by
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means of a laser beam in an intense electromagnetic field
[14] or for computing corrections to the famous Casimir
energy density between two parallel plates[15]. Using the
Worldline formalism it has also recently been possible to
clarify discrepancies between different results for ampli-
tudes of photon splitting in a background field[16].

2 The Worldline formalism of QED
in a general constant electromagnetic
background field

Exploring the Dirac-action of a massive spinor-particle
which couples through the covariant derivative Dµ ≡ ∂µ −
ieAµ to an abelian gauge field Aµ in the second order for-
malism, one can express the effective action induced by a
Dirac-particle loop in an electromagnetic background field
with potential Aµ and field strength tensor Fµν by:

Γ [A] = −2
∫ ∞

0

dT

T
e−m2T DxDψ exp

(
−
∫ T

0
dτ

×
(
ẋ2

4
+

1
2
ψψ̇ + ieAµẋ

µ − ieψµFµνψ
ν

))
. (1)

The path integrals are performed over scalar fields x(τ)
using periodic boundary conditions x(0) = x(T ) and their
Grassmannian superpartners ψ(τ) with antiperiodic
boundary conditions ψ(0) = −ψ(T ). The “centre of mass”
coordinate

x0 ≡
∫ T

0
x(τ)dτ (2)

of the scalar fields will then be subtracted, which results in
a delta function for the overall momentum conservation.
The Worldline Lagrangian is invariant under the world-
sheet supersymmetry [17]

δεx
µ = −1

2
εψµ, δεψ

µ = εẋµ (3)
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and the interaction part of Γ [A] can therefore be written
as a supersymmetric Wilson-loop. For this the two-loop
correction again is known [10] and given by the double
contour integral insertion of

e2

2
Γ (d/2 − 1)

4πd/2

∫ T

0
dτadθa

∫ T

0
dτbdθb

DXµ
aDXµb

(Xa −Xb)d−2

=
e2

2

∫ T

0
dτadθa

∫ T

0
dτb dθb DX

µ
aDXµb

×
∫ ∞

0
dT̄ (4πT̄ )−d/2 exp

(
− (Xµ

a −Xµ
b )2

4T̄

)
(4)

into the one-loop path integral (1). For brevity we intro-
duced the superfield notation

Xµ
a (τ̂) ≡ Xµ

a (τ, θ) ≡ xµ(τa) +
√

2 θψµ(τa),

D ≡ ∂

∂θ
− θ

∂

∂τ
(5)

with Grassmannian variables θa,b, but we shall return to
component field representation later. For simplification of
further notation we also define the operator Bab by

(x(τa) − x(τb))2 ≡
∫ T

0
dτ1

∫ T

0
dτ2 (x(τ1)Babx(τ2)). (6)

Assuming now the gauge field to be a constant, classi-
cal background field, we can employ the Fock-Schwinger
gauge Aµ = 1

2Fµνx
ν . Thereby all terms in the exponen-

tial become bilinear and the evaluation of the two-loop
effective action reduces to the computation of Gaussian
integrals, i.e. the computation of the functional determi-
nants of the the two bilinear operators considering their
respective boundary conditions. To obtain explicit results
one can for instance use the spectral representation in the
Fourier basis [12]

DetP

(
− d2

dτ2 + 2ieF
d

dτ
+
Bab

T̄

)

= (4πT )d det
(

sin(eFT )
eFT

)
det
(
I − Cab

T̄

)

DetA

(
I − 2ieF

(
d

dτ

)−1
)

= det (cos(eFT )) . (7)

The operator Cab will be defined in (12). We now only
remain with performing the ordinary determinants over
Lorentz-indices. For this we shall have to specify the
Lorentz-frame we shall be working in in the following.

For scalar QED, the field theory of spinless, massive
point particles, coupling to an abelian gauge field, as ex-
pressed by the euclidean action

Sscal = φ†(−D2 +m2)φ, (8)

one finds in the Worldline formalism completely analo-
gously effective actions for the one- and two-loop level.
The corresponding formulas are obtained from (1) and
(4), rewritten in the component field representation, by

erasing all terms containing ψ, as well as the prefactor
−2. Alternatively stated in reversed order this means, that
spinor QED is obtained from scalar QED by substituting
x(τ) by a supervariable coordinate X(τ̂). In the following
two chapters we shall now explicitly compute the expres-
sions we have got and find their functional and asymptotic
dependence on the field strengths of the electric and mag-
netic background fields, always using dimensional regular-
ization. This enables a direct comparison of these results
of the Worldline formalism to similar calculations of ordi-
nary QED.

3 Scalar Quantum Electrodynamics

We shall first treat the simpler case of scalar theory and
afterwards find its generalization to spinning particles.
The starting point is the two-loop correction to the Euler-
Heisenberg Lagrangian in the Worldline formalism of
scalar QED in a constant electromagnetic background
field. Using (7) in (1) and (4),we find [12]:

L(2)
scal[F ] = − e2

2(4π)d

∫ ∞

0

dT

T d/2+1 e
−m2T

∫ ∞

0
dT̄

∫ T

0
dτa

×
∫ T

0
dτbdet−1/2

(
sin(eFT )
eFT

)

×det−1/2
(
T̄ − 1

2
Cab

)
〈ẋaẋb〉 . (9)

The remaining contraction of the bosonic variables ẋa,b ≡
ẋ(τa,b) can be rewritten in terms of Green’s functions:

〈ẋaẋb〉

= tr

(
G̈Bab +

1
2

(ĠBaa − ĠBab)(ĠBab − ĠBbb)
T̄ − 1

2Cab

)
. (10)

We used the modified Worldline Green’s function

GBab ≡ GB(τa, τb)

≡ 〈τa |
(

1
2

(
d2

dτ2 − 2ieF
d

dτ

))−1

| τb〉 (11)

=
1

2(eF )2

(
eF

sin(eFT )
e−ieFTĠBab + ieF ĠBab − 1

T

)

and

Cab ≡ GBaa − GBab − GBba + GBbb

=
cos(eFT ) − cos(eFTĠBab)

eFT sin(eFT )
. (12)

The ordinary Worldline Green’s function inverts the op-
erator 1

2∂
2
τ on a circle of radius T . Up to an irrelevant

constant it is given by

GBab ≡ GB(τa, τb) ≡| τa − τb | − (τa − τb)2

T
, (13)
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and its derivative with respect to the first variable is:

ĠBab = sign(τa − τb) − 2
(τa − τb)

T
. (14)

After a partial integration in τa (9) can be rearranged in
a form, in which the divergencies appearing in the inte-
grations over T and τa,b are combined differently and in a
very suitable manner. This will be of particular use when
we regularize the integrations by introducing a new linear
combination of the two expressions:

L̂(2)
scal[F ] = − e2

2(4π)d

∫ ∞

0

dT

T d/2+1 e
−m2T

∫ ∞

0
dT̄

∫ T

0
dτa

×
∫ T

0
dτbdet−1/2

(
sin(eFT )
eFT

)

×det−1/2
(
T̄ − 1

2
Cab

)

×1
2

(
tr(ĠBab)tr

(
ĠBab

T̄ − 1
2Cab

)

+tr

(
(ĠBaa − ĠBab)(ĠBab − ĠBbb)

T̄ − 1
2Cab

))
. (15)

Now all quantities in the Lagrangian are written as func-
tions only depending on the Schwinger proper time (SPT)
variables T , T̄ and τa,b, the Worldline Green’s function G
as well as the field strength tensor F of the electromag-
netic field.

It is well known that for any such field strength tensor
there either exists a Lorentz-frame, in which the electric
and magnetic fields are parallel and their magnitudes ε
and η in this frame are relativistic invariants of the field,
or they are perpendicular in any frame[18]. In the latter
case a Lorentz transformation can be used to eliminate
one of the fields, so we only have to deal with the first
case. Therefore F takes on a very simple form where only
two symplectic block elements are non zero, so that the
determinants just factorize and the traces split into sums
of the different block-traces. One can further diagonalize
F by the unitary transformation

U ≡ 1√
2




1 i 0 0
i 1 0 0
0 0 1 i
0 0 i 1


 (16)

and read off the field strengths from the complex eigen-
values a and b of U†FU . To simplify the notation by
symmetrizing all expressions we introduce the eigenvalues
themselves as new variables:

a ≡ ε and b ≡ −iη. (17)

In the conventional scalar QED parameter integral expres-
sions for the one- [1,2] and two-loop [3–5] contributions to
the Euler-Heisenberg Lagrangian are known for a general,
constant, respectively a purely magnetic, constant back-
ground field. Using the above notations the unregularized

effective one-loop Euler-Heisenberg Lagrangian from stan-
dard QED is given by:

LQED
scal [F ] = L(0)

scal[F ] + L(1)
scal[F ]

≡ a2 + b2

2
+

1
16π2

∫ ∞

0

dT

T 3 e
−m2T

×
(

e2abT 2

sinh(eaT ) sinh(ebT )

)
. (18)

Later on we shall need the subtracted version of the one-
loop correction in dimensional regularization:

L̄(1)
scal[F ] =

1
(4π)d/2

∫ ∞

0

dT

T d/2+1 e
−m2

0T (19)

×
(

e2abT 2

sinh(eaT ) sinh(ebT )
+
e2(a2 + b2)T 2

6
− 1
)
.

Compared to the references given above, a Wick rota-
tion of the integration variable was performed in both
formulas. Regarding the antisymmetry and blockform of
the field strength tensor, it is only necessary to know the
trigonometric functions of some matrix σ for the explicit
computation of all functional expressions appearing in the
Worldline formula (9):

σ ≡
(

0 1
−1 0

)
. (20)

These are easily obtained by their power series expansions:

sin(σf) = σ sinh(f),
cos(σf) = I cosh(f). (21)

Using the definitions

I ≡
(

1 0
0 1

)
,

I1 ≡
(
I 0
0 0

)
,

σ1 ≡
(
σ 0
0 0

)
, (22)

and analogous expressions for I2 and σ2, F reads

F = aσ1 + bσ2. (23)

It is to be heeded that powers of F are evaluated in the
Euclidean metric, otherwise σ2 would always come with
factors of i. Now we can freely employ (21) to calculate
the two-loop correction (9). Futher introducing v ≡ eaT
and w ≡ ebT we get:

GBab =
T

2

(
I1

(
cosh(vĠBab)
v sinh(v)

+
1
v2

)

−iσ1

(
sinh(vĠBab)
v sinh(v)

+
ĠBab

v

)
(24)
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+ I2

(
cosh(wĠBab)
w sinh(w)

+
1
w2

)

−iσ2

(
sinh(wĠBab)
w sinh(w)

+
ĠBab

w

))
,

ĠBab = I1
sinh(vĠBab)

sinh(v)
− iσ1

(
cosh(vĠBab)

sinh(v)
− 1
v

)

+(1 ↔ 2, v ↔ w),

G̈Bab = −I1 2v
T

cosh(vĠBab)
sinh(v)

+ iσ1
2v
T

sinh(vĠBab)
sinh(v)

+(1 ↔ 2, v ↔ w),

ĠBaa = i cot(eFT ) − i

eFT
= iσ1

(
1
v

− coth(v)
)

+iσ2

(
1
w

− coth(w)
)
,

Cab = −I1
(

cosh(v) − cosh(vĠBab)
v sinh(v)

)

−I2
(

cosh(w) − cosh(wĠBab)
w sinh(w)

)
.

With some additional simplification of notation:

Gv
Bab ≡ T

2
cosh(v) − cosh(vĠBab)

v sinh(v)
,

Ġv
Bab ≡ sinh(vĠBab)

sinh(v)
,

γv ≡ 1
T̄ +Gv

Bab

,

γ ≡ 1
T̄ +GBab

, (25)

and similar definitions for Gw
Bab, Ġ

w
Bab and γw, one can

insert (24) into (9). We prefer to state the result imme-
diately in dimensional regularization. Therefore we follow
the procedures in [13] and continue the field strength ten-
sor to d = 4 + ε dimensions by zero columns and rows,
rescale to the unit circle according to τa,b ≡ ua,bT and
finally use the translation invariance on the circle to elim-
inate the ub-integration. This leads to:

GBab = ua(1 − ua),

ĠBab = 1 − 2ua =
√

1 − 4GBab. (26)

The contributions of the ε additional dimensions are ob-
tained exactly like the terms from vacuum dimensions in
[12] and [13] and before integrating they are of course of
the order ε in the integrand. We now get:

det−1/2
(

sin(eFT )
eFT

(T̄ − 1
2
Cab)

)

=
v

sinh(v)
w

sinh(w)
γvγwγd/2−2 ,

〈ẏaẏb〉 = (4 − d) − 4

(
v
cosh(vĠBab)

sinh(v)
+ w

cosh(wĠBab)
sinh(w)

)

−γv(Ġv2
Bab + 4v2Gv2

Bab)

−γw(Ġw2
Bab + 4w2Gw2

Bab) − γ
d− 4

2
Ġ2

Bab , (27)

and for (15) we also need:

1
2

(
tr(ĠBab)tr

(
ĠBab

T̄ − 1
2Cab

)

+tr

(
(ĠBaa − ĠBab)(ĠBab − ĠBbb)

T̄ − 1
2Cab

))

= 2(Ġv
Bab + Ġw

Bab +
d− 4

2
ĠBab)

×(γvĠv
Bab + γwĠw

Bab + γ
d− 4

2
ĠBab)

−γv(Ġv2
Bab + 4v2Gv2

Bab) − γw(Ġw2
Bab + 4w2Gw2

Bab)

−γ d− 4
2

Ġ2
Bab. (28)

The tadpole contribution proportional to δ(τa − τb) from
G̈Bab is vanishing in dimensional regularization and was
already eliminated in (27). By inserting into (9) and (15)
with (26), we obtain expressions for the integrands that
exclusively depend on T , T̄ and ua. Now a discussion of
the divergencies in the various integrations is possible and
we do this by following carefully the steps of [13] again.
Although the integration over T̄ can also be performed in
closed form at fixed and finite T and ua, we will prefer to
expand the integrand in T and ua, the critical variables,
and only then integrate the coefficients of the expansion
term by term over T̄ . The necessary interchange of the
integration over T̄ with the differentiation with respect to
T is allowed by a rule of Leibniz. Writing the Worldline
two-loop correction

L(2)
scal[F ] = − e2

2(4π)d

∫ ∞

0

dT

T d−1 e
−m2T

∫ ∞

0
dT̄

×
∫ 1

0
dua I(T, T̄ , ua, d), (29)

where we have called the rescaled variable again T̄ , we find
that the integration over T causes divergencies by those
terms of the expansion of I(T, T̄ , ua, d), that are constant
or quadratic in T , as no odd powers are occurring at all.
The analysis of the ua-integration is more complicated.
Here all powers of GBab that are negative in d = 4 lead to
divergencies. Particularly the power G1−d/2

Bab contributes a
1/ε pole:∫ 1

0
duaG

1−d/2
Bab =

∫ 1

0

dua

(ua(1 − ua))1+ε/2

= B
(
− ε

2
,− ε

2

)
= −4

ε
+ o(ε), (30)

with the Euler-Betafunction B(α, β) ≡ Γ (α)Γ (β)/Γ (α +
β). Correspondingly the power G−d/2

Bab implies another 1/ε
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divergency. In fact, such terms are existing in the inte-
grated coefficients of the expansion of I(T, T̄ , ua, d) in
powers of T :∫ ∞

0
dT̄ I(T, T̄ , ua, d)

= −d− 2 + 8GBab

(d− 2)Gd/2
Bab

− v2 + w2

6d(d− 2)Gd/2
Bab

× (d(2 − d) + 2(d2 − 6d+ 16)GBab

+16(d− 14)G2
Bab

)
+ o(T 4) . (31)

If we introduce a similar integrand Î(T, T̄ , ua, d)
for L̂(2)

scal[F ] from (15) and expand following the same pro-
cedures, we find∫ ∞

0
dT̄ Î(T, T̄ , ua, d)

=
(d− 1)(1 − 4GBab)

G
d/2
Bab

− v2 + w2

6dGd/2
Bab

× (d(d− 1) − (6d2 − 22d+ 16)GBab

+8(d− 2)(d− 7)G2
Bab

)
+ o(T 4) . (32)

We now recognize the possibility to arrive at an expression
for the integrand, in which no orders G−d/2

Bab are present in
the expansion in powers of T , by using the linear combi-
nation:

d− 1
d

L(2)
scal[F ] +

1
d
L̂(2)

scal[F ]. (33)

Terms of order G−d/2
Bab cancel precisely, those in the con-

stant contribution as well as those in the quadratic. Fur-
thermore we got a cancellation of subdivergencies in the
quadratic term, the one proportional to the Maxwell en-
ergy density FµνFµν , which is now of the order ε0. This
results in a serious simplification of the regularization pro-
cedure, as we shall experience in the following. We again
obtain an expansion:

K(T, ua, d) (34)

≡
∫ ∞

0
dT̄

(
d− 1
d

I(T, T̄ , ua, d) +
1
d
Î(T, T̄ , ua, d)

)

= K02(T, ua, d) + f(T, d)G1−d/2
Bab + o

(
T 4, G

2−d/2
Bab

)
,

where now the divergencies are completely separated into

K02(T, ua, d) = −4
d− 1
d− 2

G
1−d/2
Bab − 2(v2 + w2)

3d(d− 2)
(35)

×G1−d/2
Bab (GBab(2d2 − 18d+ 4)

−(d− 4)(d− 1)),

f(T, d) = 4
d− 1
d− 2

− 2(d− 4)(d− 1)
3d(d− 2)

(v2 + w2)

−8(d− 1)
d(d− 2)

vw

sinh(v) sinh(w)

×
(
v coth(v) + w coth(w) +

d− 4
2

)
.

K02(T, ua, d) carries all divergent contributions of the T -
integration, while f(T, d) is of fourth order in T and there-
fore only divergent in the ua-integration. After subtracting
these two terms, the integral

K(T, ua, 4) −K02(T, ua, 4) − f(T, 4)G−1
Bab (36)

can easily be computed elementarily and the remaining
integrations over T und ua stay finite. Therefore a set of
subtraction terms (35) is found and the Worldline two-
loop correction to the Euler-Heisenberg Lagrangian from
(9) is regularized. If one further wants to obey the correct
electron mass renormalization in the subtraction prescrip-
tion, i.e. perform on shell subtraction, one has to adjust
the finite part of the subtraction terms, which is deter-
mined by f(T, d), in a way that the relation

δL(2)
scal[F ] = δm2

0
∂

∂m2
0
L̄(1)

scal[F ] (37)

with

δm2
0 =

αm2
0

4π

(
−6
ε

+ 7 − 3(γ − ln(4π)) − ln(m2
0)
)

+ o(ε)

(38)
holds. These conditions are derived in standard QFT, γ
is the usual Euler constant. Observing now that f(T, d)
satisfies

f(T, d) =
8(d− 1)
d(d− 2)

T 1+d/2 d

dT

(
T−d/2

×
(

vw

sinh(v) sinh(w)
+
v2 + w2

6
− 1
))

(39)

one verifies by partial integration of the derivative term
in f(T, d) and the use of (30):

δm2
0
∂L̄(1)

scal[F ]
∂m2

0

= − α

2(4π)3

∫ ∞

0

dT

T d−1 e
−m2

0T

∫ 1

0
dua f(T, d) G1−d/2

Bab

+
αm2

0

(4π)3

∫ ∞

0

dT

T 2 e
−m2

0T

(
−3(γ + ln(m2

0T )) +
3

m2
0T

+
9
2

)

×
(

vw

sinh(v) sinh(w)
+
v2 + w2

6
− 1
)

+ o(ε) . (40)

We now have the final result for the on shell renormalized
two-loop Worldline correction to the Euler-Heisenberg La-
grangian for scalar QED:

L̄(2)
scal[F ] = − α

2(4π)3

∫ ∞

0

dT

T 3 e
−m2

0T

∫ 1

0
dua (K(T, ua, 4)

−K02(T, ua, 4)) − δm2
0
∂L̄(1)

scal[F ]
∂m2

0

= − α

2(4π)3

∫ ∞

0

dT

T 3 e
−m2T

∫ 1

0
dua (K(T, ua, 4)

−K02(T, ua, 4) − f(T, 4)G−1
Bab

)
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+
αm2

(4π)3

∫ ∞

0

dT

T 2 e
−m2T

×
(

e2abT 2

sinh(eaT ) sinh(ebT )
+
e2(a2 + b2)T 2

6
− 1
)

×
(

−3(γ + ln(m2T )) +
3

m2T
+

9
2

)
. (41)

Comparing to the result for a purely magnetic field in [13]
a rather similar structure of terms is apparent. One only
has to substitute in the sense that terms for the magnetic
field are accompanied by electric ones. Still these substi-
tutions are not as easy to be guessed in detail as the fairly
simple structure of our result might suggest. Particularly
the divergent subtraction terms cannot be copied from the
magnetic case.

In (41) the terms in the expansion, which are constant
and quadratic in T , are just compensated byK02(T, ua, 4),
as are terms proportional to 1/GBab by f(T, 4)/GBab. The
finite contribution derives exclusively from K(T, ua, 4)
and the second integral and is adjusted to reproduce the
correct electron mass renormalization. If one expands the
terms in the integrand to higher orders in the fields and
performs all the integrations, the contributions from
f(T, 4)/GBab of course cancel the divergencies of
K(T, ua, 4) and one can identify in the coefficients the rel-
ativistic invariants F 2 and FF̃ in polynomials in a2 and
b2. The expansion to the fourth power of e2 reads:

L̄(2)
scal[F ] =

α3

πm4

(
275(a4 + b4) + 422a2b2

2592

)

− α4

m8

(
5159(a6 + b6)

16200
+

8881(a4b2 + a2b4)
16200

)

+
πα5

m12

(
751673(a8 + b8)

264600
+

39905(a2b6 + a6b2)
7938

+
323431 a4b4

56700

)
+ o(e10)

=
α3

πm4

(
275(ε2 − η2)2

2592
+

4(εη)2

81

)

− α4

m8

(
5159(ε2 − η2)3

16200
+

1649(ε2 − η2)(εη)2

4050

)

+
πα5

m12

(
751673(ε2 − η2)4

264600

+
628697(ε2 − η2)2(εη)2

99225

+
132134(εη)4

99225

)
+ o(e10) , (42)

where we have resubstituted the field strengths from (17).
The terms of first order in e2 coincide exactly with re-
sults from conventional QED [3,4] and for a purely mag-
netic field in the limit η → 0 the earlier results [13] of the
Worldline formalism are reproduced. Higher order terms
of this expansion are easily extracted from (41).

4 Spinor Quantum Electrodynamics

We first state the unregularized Lagrangian on the one-
loop level from conventional spinor QED [1–4]:

LQED
spin [F ] = L(0)

spin[F ] + L(1)
spin[F ] ≡ ε2 − η2

2
− 1

8π2

×
∫ ∞

0

dT

T 3 e
−m2T vw

tanh(v) tanh(w)
, (43)

and the dimensional regularized one-loop correction:

L̄(1)
spin[F ] = − 2

(4π)d/2

∫ ∞

0

dT

T d/2+1 e
−m2

0T

×
(

vw

tanh(v) tanh(w)
− (v2 + w2)

3
− 1
)
. (44)

Again we have performed a Wick rotation of the inte-
gration variable, otherwise the notation is adopted from
chapter 3.

In evaluating the expressions of the Worldline formal-
ism we in general again follow the methods of [13]. The cal-
culation (7) of the functional determinants in the World-
line formulas (1) and (4) for the two-loop correction to
the supersymmetrized Lagrangian results in the following
SPT-integral:

L(2)
spin[F ] =

e2

(4π)d

∫ ∞

0

dT

T d/2+1 e
−m2T

∫ ∞

0
dT̄

×
∫ T

0
dτadτb

∫
dθadθb

×det−1/2
(

tan(eFT )
eFT

)
det−1/2

×
(
T̄ − 1

2
Ĉab

)
〈−DxaDxb〉. (45)

The contractions of superderivatives can be expressed in
terms of super Green’s functions, substituting the Green’s
function of the scalar case. Instead we immediately write
the result in the component field representation, in which
the super Green’s functions split into modified bosonic
and fermionic Green’s functions GBab and GFab, and use a
partial integration in τa to remove second derivative terms
and do the Grassmann-integrations as well:

L(2)
spin[F ] (46)

=
e2

2(4π)d

∫ ∞

0

dT

T d/2+1 e
−m2T

∫ ∞

0
dT̄

∫ T

0
dτa

∫ T

0
dτb

×det−1/2
(

tan(eFT )
eFT

)
det−1/2

(
T̄ − 1

2
Cab

)

×
(

tr
(
ĠBab

)
tr

(
ĠBab

T̄ − 1
2Cab

)
− tr (GFab) tr

( GFab

T̄ − 1
2Cab

)

+tr
(

(ĠBaa−ĠBab)(ĠBab−ĠBbb+2GF aa)+GF abGF ab−GF aaGF bb

T̄ − 1
2 Cab

))
.
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The modified fermionic Green’s function is defined by:

GFab ≡ GF (τa, τb) ≡ 〈τa |
(

1
2

(
d

dτ
− 2ieF

))−1

| τb〉

= GF (τa, τb)
e−ieFTĠBab

cos(eFT )
. (47)

The usual fermionic Worldline Green’s function GFab is
the inverse of 1

2∂τ on the circle with antiperiodic boundary
conditions:

GF (τa, τb) ≡ sign(τa − τb). (48)

Some of the expressions in (46) can already be found in
(27) and (28), some more are still to be computed. Us-
ing (21) first we find an explicit representation for the
fermionic Green’s function GFab and its coincidence limit
GFaa:

GFab = sign(τa − τb)

(
I1

cosh(vĠBab)
cosh(v)

−iσ1
sinh(vĠBab)

cosh(v)
+ (1 ↔ 2, v ↔ w)

)
,

GFaa ≡ −i tan(eFT ) = −iσ1 tanh(v) − iσ2 tanh(w) . (49)

Together with (24) the remaining determinants and traces
can be calculated easily and are stated directly in d = 4+ε
dimensions:

det−1/2
(

tan(eFT )
eFT

)
=

v

tanh(v)
w

tanh(w)
, (50)

tr (GFab) tr
( GFab

T̄ − 1
2Cab

)

= 4

(
cosh(vĠBab)

cosh(v)
+

cosh(wĠBab)
cosh(w)

+
d− 4

2

)

×
(
γv cosh(vĠBab)

cosh(v)
+ γw cosh(wĠBab)

cosh(w)
+ γ

d− 4
2

)
,

tr

(
2GFaa(ĠBaa − ĠBab)

T̄ − 1
2Cab

)

= 4

(
γv

(
1 − cosh(vĠBab)

cosh(v)

)

+γw

(
1 − cosh(wĠBab)

cosh(w)

))
,

tr
(GFabGFab − GFaaGFbb

T̄ − 1
2Cab

)

= 2

(
γv cosh2(vĠBab) + sinh2(vĠBab) − sinh2(v)

cosh2(v)

+ γw cosh2(wĠBab) + sinh2(wĠBab) − sinh2(w)
cosh2(w)

+γ
d− 4

2

)
.

Inserting into (46), we can arrange the integrand in a form,
in which it explicitly only depends on the SPT-variables,
respectively the Green’s functions. As in the scalar case
we rescale the T̄ -integration to the unit cirle and employ
translation invariance of the zero-point to set τb = 0,
which implies sign(τa − τb) = 1, so that (26) is also satis-
fied again. We then introduce an integrand J(T, T̄ , ua, d)
in accordance with

L(2)
spin[F ] =

e2

(4π)d

∫ ∞

0

dT

T d−1 e
−m2T

∫ ∞

0
dT̄

×
∫ 1

0
duaJ(T, T̄ , ua, d), (51)

which we expand under the integral in powers of T and
GBab. To identify the subtraction terms, integration and
differentiation are interchanged and the T̄ -integration is
performed coefficient by coefficient:

L (T, ua, d) ≡
∫ ∞

0
dT̄ J(T, T̄ , ua, d) (52)

= L02(T, ua, d) + g(T, d)G1−d/2
Bab + o

(
T 4, G

2−d/2
Bab

)
.

In contrast to scalar QED right from the beginning no
terms are appearing that were proportional to G−d/2

Bab , and
the Maxwell term is of the order ε0, so that the Lagrangian
from (46) can be regularized analogously to (34) without
any further modification. For the divergent coefficients we
find:

L02(T, ua, d)

= −4(d− 1)G1−d/2
Bab − v2 + w2

3d
(53)

×
(
4(d− 1)(d− 4)G1−d/2

Bab +4(d− 2)(d− 7)G2−d/2
Bab

)
,

g(T, d)

= −4(d− 1)
3d

((
vw

tanh(v) tanh(w)

)

×
(

6v(coth(v) − tanh(v)) + 6w(coth(w) − tanh(w))

+3(d− 4)
)

− (d− 4)(v2 + w2) − 3d
)
.

Because of g(T, d) = o(T 4) the divergencies are completely
seperated. To obey the on shell subtraction scheme, i.e. to
choose the finite subtraction term appropriate to have (37)
satisfied by δL(2)

spin[F ] as well, we relate g(T, d) to L̄(1)
spin[F ]

again by a partial integration:

g(T, d) =
8(d− 1)

d
T d/2+1 d

dT
(54)

×
(
T−d/2

(
vw

tanh(v) tanh(w)
− v2 + w2

3
− 1
))

.

Using further

δm2
0 =

αm2
0

4π

(
−6
ε

+ 4 − 3(γ − ln(4π)) − 3 ln(m2
0)
)

+o(ε) (55)
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with (30), one now confirms by partial integration of the
derivative term in g(T, d) that:

δm2
0
∂L̄(1)

spin[F ]
∂m2

0

=
α

(4π)3

∫ ∞

0

dT

T d−1 e
−m2

0T

∫ 1

0
dua g(T, d) G

1−d/2
Bab

+
αm2

0

(4π)3

∫ ∞

0

dT

T 2 e
−m2

0T

×
(

vw

tanh(v) tanh(w)
− v2 + w2

3
− 1
)

×
(

18 − 12γ − 12 ln(m2
0T ) +

12
m2

0T

)
. (56)

Finally we obtain the result for the on shell renormalized
two-loop correction to the Euler-Heisenberg Lagrangian in
spinor QED:

L̄(2)
spin[F ]

=
α

(4π)3

∫ ∞

0

dT

T 3 e
−m2

0T

∫ 1

0
dua

× (L(T, ua, 4) − L02(T, ua, 4)) − δm2
0
∂L̄(1)

spin[F ]
∂m2

0

=
α

(4π)3

∫ ∞

0

dT

T 3 e
−m2T

∫ 1

0
dua (L(T, ua, 4)

−L02(T, ua, 4) − g(T, 4)G−1
Bab

)
− α

(4π)3

∫ ∞

0

dT

T 2 e
−m2T

×
(

e2abT 2

tanh(eaT ) tanh(ebT )
− e2(a2 + b2)T 2

3
− 1
)

×
(

18 − 12γ − 12 ln(m2T ) +
12
m2T

)
. (57)

The T̄ -integration of J(T, T̄ , ua, d) can again be performed
elementarily for finite values of the other variables and the
remaining parameter integral stays finite. The cancella-
tions of the divergent parts of the integral over L(T, ua, 4)
occurr exactly in the same manner as in the scalar ex-
pression and the second integral adjusts the electron mass
renormalization. We also find structural similarities to the
results for a purely magnetic background field. The expan-
sion of the integrand to the fourth order in e2 leads to:

L̄(2)
spin[F ] =

α3

πm4

(
16(ε2 − η2)2

81
+

263(εη)2

162

)

− α4

m8

(
1219(ε2 − η2)3

2025
+

8656(ε2 − η2)(εη)2

2025

)

+
πα5

m12

(
541232(ε2 − η2)4

99225

+
470912(ε2 − η2)2(εη)2

11025

+
3815584(εη)4

99225

)
+ o

(
e10
)
. (58)

It is very easy to obtain higher orders from the given for-
mulas. The lowest order in e2 is perfectly matching the
results from standard spinor QED[3,4]. Of course, the ex-
pansion reproduces earlier Worldline results for the purely
magnetic field [13] in the limit η → 0.
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